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SIMILARITY SOLUTIONS FOR CONVERGING SHOCKS 

by 

R. B. Lazarus and R. D. Richtmyer 

ABSTRACT 

This report recapitulates the known results for 
similarity solutions for the flow problem of a strong 
converging shock in spherical or cylindrical symmetry 
and extends that work in four ways:  (1) parameters of 
the standard solutions are given for a large number of 
values of y;   (2) some new, non-analytic solutions are 
exhibited for relatively large values of y; (3) the 
standard solutions are examined more thoroughly in the 
limits Y"*"00 and Y"*l > anc* (4) solutions, existing only 
in a narrow band of values of Y> are given for the 
problem of two converging shocks. 

I.   INTRODUCTION 
As is well known, ' ' '  there is a similarity solution for a 

shock converging on the origin in spherical or cylindrical symmetry, 

when that incoming shock runs with infinite Mach number into uniform 

material at rest and when that material obeys a gamma law equation 

of state pe = P/(Y_1)J with e the internal energy per unit mass, p 

the density, and p the pressure.  The solution includes reflection 

of the shock at the origin, and divides space-time (r,t) into three 

regions, namely Region 1 ahead of the incoming shock, Region 3 be- 

hind the reflected shock, and Region 2 between the shocks (see Fig. 

1-1). 

Previous authors have observed that the solution is unique 

(given gamma and the type of symmetry) if one requires continuity 

of the derivatives of the flow variables throughout the interior of 

Region 2, and the present work includes calculations of those "stand- 

ard" solutions for many values of gamma (and both symmetries), in- 

cluding the limiting cases Y+1 and Y"*00«  But tne present work also 



t 

shows that those solutions are 

not unique. 

Even with the requirement 

of continuous derivatives, it is 

shown in Sec. VI that, for a 

narrow band of values for gamma 

near y = 2, two new solutions 

exist in which Region 2 is di- 
vided by a second incoming shock, 

which overtakes the original 

shock at the origin. 

Furthermore, as discussed 

in a previous report in this 

series,5 for the case of a col- 

lapsing cavity, the original 

flow equations do not require 
continuity of derivatives.  In 
particular, there is in Region 2 a limiting negative characteristic 

which reaches the origin concurrently with the incoming shock; 

jumps in the derivatives of the flow quantities can be propagated 

along that characteristic.  Since the trajectory of that character- 

istic corresponds to a single value of the similarity variable, we 

may accept similarity solutions with jumps of derivative at that 

point.  It is shown in Sec. Ill that one-parameter families of such 

solutions exist for gammas greater than certain critical values (in 
fact, the very values which are the threshold for the double-shock 

solution band), and that those solutions appear to be quite inter- 

esting. 
Finally, it appears that these two types of new solution can 

be combined. 

Fig. 1-1 
r-t trajectories of incoming and 
reflected shocks. 

II.  THE FLOW EQUATIONS 
Given an inviscid fluid without heat conduction, described by 

its local velocity v(r,t), its density p(r,t), its energy per unit 

mass e(r,t), and its pressure p(r,t), as given by some equation of 



State p = p(p,e), the equations governing regions of smooth flow 

are, in the absence of any body forces, 

Lp  = 0 

Lpv = -Vp (2.1) 

Lpe = -pV*v, 

where the operator L is defined by Lf = f + V»vf, the subscript t 

denoting partial differentiation with respect to t.  For a poly- 

tropic fluid, the equation of state is p = (y-l)pe, and the entropy 

is a function only of the combination s = pp~Y.  Substituting for e 

in the equations above, we find that (v«V + 3/3t)s = 0, so that the 

entropy is indeed constant along the trajectories of fluid elements, 

Introducing the new variable c(r,t) = +^(3p/9p)  = +VYP/P > 

the local sound speed, we can rewrite our equations as 

Pt + V« (pv) = 0 

it 
+ I*VI + ^iV(>c2) = ° (2-2) 

c
t + X.*Vc + (Y-l)cV'V = 0. 

For the cases of cylindrical symmetry (v=l) or spherical symmetry 
(v=2), these can be written (using u for the radial fluid velocity) 

Pt 
+ (Pu)r 

+ vpu/r = 0 

Ut + uur + 7p^pc2)r = ° C2-.3) YP 

Ct + UCr + (Y-l)c(ur+vu/r) = 0. 



Another attractive choice of dependent variables replaces 

p(r,t) by s(r,t) = c2p
1"Y/Y.  With the substitution k = 2/(y-l) 

this choice yields 

s^ + us  =0 
t    r (2.4) 

(u ± kc)  + (u ± c)(u ± kc)  = +vuc/r + c sr/y(Y-l)s, 

displaying the equations in characteristic form. 
Now, with a and K free parameters, we try the similarity vari- 

able 

y = const. + log r - alog t, (2.5) 

and the substitutions 

u(r,t) = - art-1V(y) 

c(r,t) = - art_1C(y) C2-6) 

p(r,t) = Por
KR(y) or s(r,t) = SQ a2r2t"2r'k(Y"1)S(y). 

Using 3fCy)/3r = f'/r and 3f(y)/3t = - af'/t, we can substitute 

these into Eq. 2.3.  We find that we get common factors of pQ, a, 

r, and t; dividing these out  and using the more convenient X  = 1/a, 

we derive' 

R'   +   (K+V+1)RV +   (RV)'   =   0 

V(A+V)   +  V'(l+V)   +   C[(K+2)C+2C'+C'/R]/Y  =   0 (2.7) 

2C(X+V)   +   2C'(1+V)   +   (y-l)C((v + l)V+V)   =   0. 

Using the variables u, c, and s, we would get 

(1+V)S' + S [(2-K(Y-1))V+2X] = 0 



and, after multiplication by (1+V+C), 

[(1+V)2-   c2](V'±kC')   =  vVC[C+(l+V)] 

- C2[l+C/(l+\ 

- (1+V+C) (A+V±C) (V±kC) , 
C2[l+C/(1+V)] (<+k(X-l))/Y (2.8) 

where of course Eq. 2.8 denotes two equations, one with all the 

upper signs and one with all the lower signs. 

By a bit of algebra, we can get from the R, V, C equations two 

different expressions for 1/(1+V), one involving constants  R'/R 

and V'/(l+V), and the other involving constants  C'/C and V*/(l+V) 

Equating them, we can get an expression whose derivative with re- 

spect to y vanishes, leading to a constant of the motion and thus 

reducing our system to a system of two equations.  Explicitly, the 

constant of motion is 

exp(2y/a)C2[R(l+V)]q/RY-1 = const., with 

q= [K(Y-l)+2(l-oO/a]/(K+v+l). (~2,9-) 

With more algebra, we can then put our system into the form 

V* = N^V.Q/DCV,^ 
(2.10) 

C» = N2(V,C)/D(V,C), 

where 

D(V,C) = (1+V)2-C2 (2.11) 

and 

N (V,C) = -V(1+V)(A+V) + C2 [(y+l)V+2A~2'K ] 

N2(V,C)   =   -l/2C[V2(2 + v(y-l))   +  V((3-Y)* + V(Y-1) + 

+Y+D   +   2A]   +   C3[i   +   KCY-I^X-I)^ 

(2.12) 



Since the similarity variable y does not appear explicitly in 

D, N  or N2, our system of two ordinary first order non-linear 

differential equations is autonomous, and we can write it as a 

single equation 

dC/dV = f (V,C). (2.13) 

An initial condition for this equation, however, is a condition on 

one branch of the curve r(t) = const. |t|a, corresponding to some 

constant value of y. 
The free parameter K allows us to handle the s = constant 

boundary condition of the cavity collapse problem described in Ref. 

5, by taking K = -2 (A-l)/(y-1), and the p = constant boundary con- 

dition of an infinitely strong shock, by taking < = 0. 

Since Eq. 2.13 does not contain y, it will be convenient to 

change similarity variable to x = -e"Ay" 

III. THE CONVERGING SHOCK; THE SINGULARITIES 
To permit a similarity solution, any shock must be at a con- 

stant value of the similarity variable x (or y), so that the physi- 

cal boundary condition along the shock trajectory T
s^ocy.  =  r(t) can 

be a boundary condition at some x  for the similarity equations. 

Thus we must have r .  , = constant«ta.  Note that, if two or more 
shock 

shocks exist within one solution, they must all have that form with 

the same value of a, differing only through different constants of 

proportionality.  We are interested in solutions for the range 

0<a<l. 
The jump conditions across a shock become, in terms of the 

similarity variables V, C, and R, 

i+Vl. izi(i+v0) ♦ ry+1)
2

cl
c;Vo) 

ci2 = co2 + ^T- [d+V2 ■  C1+Vi)2l C3,1) 

^(l+Vj) = R0(i
+v0). 



For the initial shock converging into material at rest, let us 

take t = 0 to be the time of shock collapse, set r     = A(-t)a, 
- S flOC K 

and take x = t(A/r)A as our similarity variable.  Then the shock 

path is x = -1.  The solution for x < -1, the initial and undis- 

turbed region, is simply u=V=0=c=C, and R(x) = 1 (remember 

that we are now taking K = 0).  Then the jump conditions give us 

the starting values 

V(-l) = -2/(Y+1) 

CC-1) = +V2YCY-1) /(Y+l) C3.2) 

R(-l) = (Y+1)/(Y-1). 

The solution must extend through x = -0, which corresponds to 

all of r > 0 at t = -0, and continue through positive values of x 

(and thus t) until we get to the reflected shock.  At x = 0, we 

must have V = C = 0, so that u and c may be finite at finite r (see 

Eq. 2.6).  But then the denominator in Eq. 2.10, namely D = 

(1+V)2-C2, will be +1, whereas it starts out negative (namely 

-(y-1)/(Y+1))•  Thus it must pass through zero, but it may do so 

only if the numerators N and N vanish simultaneously.  In other 

words, our solution of dC/dV = N /N-, must pass through a singular- 

ity of the form 0/0.  It will not do so automatically but must be 

made to do so by a suitable choice of the parameter a.  Specifi- 

cally, we will find that a unique a(y) (for the spherical case, and 

a different unique a(y) for the cylindrical case) gives the "stand- 

ard" smooth solutions, but that, for y  large enough, other values 
of a give other valid solutions.  To understand the matter, we must 

investigate the singularities in more detail. 
2       2 It should first be noted that, if we substitute C = (1+V) , 

which is to say D = 0, into either N or N_ of Eq. 2.12, then the 

other N will vanish identically. 



Substituting C2 = (1+V)2 into the first Eq. 2.12 and setting 

N = 0 yields the cubic 

0 = (1+V) [V2 + aV + b] , (3.3) 

with 

a . 1 - I*llllll21, 
VY (3.4) 

D =    2 . 
vy 

The solution V = -1 is irrelevant to the converging shock problem 

(it is the starting point for the collapsing cavity problem).  The 

other two solutions are real when the discriminant 

a2-4b = 1 - 2^i(Y+2) + IA^il_(Y-2)
2 (3.5) 

VY        v^ 

is positive.  The discriminant is positive for X-l in the range 

0<X-1 <  HX__, (3.6) 
(VY

+
V2) 

l 

and it is in that range that we will look for solutions.  (The dis- 

criminant is again positive for X-l > vy/(Vy-V2) ; this range does 

not seem to provide any solutions.) 
Note:  For the collapsing cavity problem, Eqs. 3.4 through 3.6 

come out to be the same expressions, but with y replaced by y-1. 

Observe that the two singularities are at (V,C) = (-1,0) and 

(0,1) when X =  1, and move toward each other as X   increases.  We 
will distinguish the two singularities by calling them "left" and 

"right" according as we choose the minus sign or the plus sign in 

V .   = l/2(-a±VaZ-4b). (3.7) 
sing 



It will turn out that the "standard" solutions pass through 

the left singularity for small y and through the right singularity 

for large y.  By continuity, then, there must be critical values 

for y (one for spherical symmetry and one for cylindrical), for 

which the standard solution has X  at the top of the range given in 

Eq. 3.6 and passes through the coalesced singularity.  It appears 

that "non-standard" solutions exist only for y greater than these 

critical values, which are 

y  = 1.9092084, for v = 1 (cylindrical), 
C (3.8) 

y  = 1.8697680, for v = 2 (spherical). 

For any specific v and y, now, other than one of the critical 

pairs, let us consider solutions of Eq. 2.13 for some X  slightly 
displaced from the unique A(v,y) which gives the "standard" solu- 

tion.  Consider the solution as it approaches the singularity 

(which will, of course, have been slightly displaced by the change 

in A).  If the singularity is at (V ,C ), say, we must have 

dCy   (V-   VS)3N2/3V+   (C-Cs)9N2/aC ^Q) 

dV        (V-V  )3N1/9V +   (C-C   )3Nn/3c' 
s^     1 sJ     1 

where the partial derivatives are evaluated at (V ,C ) and are 
s  s 

simply algebraic functions of v, y, and X. 
The general solution of this equation is 

E E 
[(C-Cs) - L2(V-Vs)] 

2 = const-[(C-Cs) - L^V-VJ]   1,      (3.10) 

where, with 

R2 - r
9N2   ^   + 4^!^1 (3.11) L"3"C~   3VC

J    ^3VC 3C ' s    s       s  s 



we have 

2L1 29Nl/9Cs = 3N2/
9Cs"3Nl/8Vs±R (3-12) 

and 

2E1 29N1/8Cs = 9N2/3Cs+8N1/8Vs±R. (3.13) 

For our case, it appears that R is always real and non-zero, and 

that L and L have opposite signs, in a neighborhood of the "stand- 

ard" A(V,Y).  The E's and L's are of course algebraic functions of 

v, Y> 
and A• 

If E and E have opposite signs, the only solutions through 

the singularity are (locally) the special solutions 

C-C = Ln „(V-V ). (3.14) 
s   1,2   s' 

For Y < Y , the standard solution is of this type.  For one particular 
value of A, the solution passes through the left singularity with 

the slope corresponding to the negative L, and, for that A, the left 

singularity does indeed have E's of opposite sign.  For neighboring 

values of A, the solution will not pass through either the left or 

the right singularity. 
Nor does it seem likely that, for Y < Y , there are other solu- 

tions for substantially different values of A.  For larger values, 

the E's continue to have opposite signs.  For substantially smaller 

values of A, the E's do have the same sign, but the left singularity 

moves further to the left, the positive L is less than one, and the 

solution hits the forbidden line C = 1+V before it can be attracted 

to the singularity (see Fig. 3-1). 
For Y > Y , where the standard solution goes through the right 

singularity, we have the case where the E's have the same sign. In 

such a case, all solutions which come sufficiently close to CVS,CS) 

10 



D = 0 
D=0 

Fig. 3-1 
Attractive singularity blocked 
above by the line D=0. 

Fig. 3-2 
Attractive singularity open above, 

pass through the singularity, and they do so, in general, asymptot- 

ically like 

C-C  = L.(V-V ), s   l *-   sJ ' 
(3.15) 

where E. (i = 1 or 2) is the E of lesser magnitude.  It turns out 

that that L. is the positive L, and that the (unique) "standard" 
l       *  

solution is precisely the special solution which goes through with 

negative slope (i.e., with the other L). 

For the entire range y  > y   , the positive L is greater than 
one.  To reach the singularity without first crossing C = 1+V, 

therefore, the solution must come in from above (see Fig. 3-2). 

Since the main effect of changing X  is to move the singularity 

(i.e., the solution curve does not change much until we approach the 

singularity), this means that the right singularity, with which we 

are here concerned, must be moved left.  Thus only values of X 
greater than the standard X(v,y) will work.  The foregoing analysis 

is only valid in a neighborhood of the singularity.  A complete 

analysis will be published elsewhere. 

11 
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Fig. 3-3 
Pressure profiles for y = 3, 
spherical symmetry. 

Fig. 3-4 
Compression profiles for y = 3, 
spherical symmetry. 

Figs. 3-3 through 3-5 show 

the pressure, density, and veloc- 

ity profiles at a time when the 

incoming shock is at r = 1, for 

the case y = 3, v = 2.  For the 
non-standard solutions, the cor- 
ners are on the limiting charac- 

teristic  and are such as to sat- 

isfy the flow equations from the 

left and from the right.  Note: 

In these solutions, the curves in 

the V-C plane were allowed to 

leave the singularity in the 

"standard" direction.  This is 
not necessary (see p. 10 of Ref. Fig. 3-5 
5), but other solutions have not    Fluid velocity profiles for y = } ' 3, spherical symmetry.  The down- 
yet been studied. ward sloping portions are dis- 

tinct  but too close to plot 
separately. 

IV.  THE REFLECTED SHOCK 
The initial shock, which is our starting point, is at x = -1; 

collapse is at x = 0; and continuation to positive times is simply 

continuation to positive x.  As one might expect on physical grounds, 

12 



it will not be possible to continue the same solution to x = + °°. 

One expects this because large positive values of x correspond to 

small values of r at large positive values of t, and this region of 

the flow should be behind a reflected shock.  As mentioned above, 

the trajectory of that reflected shock will have to lie on x = con- 

stant = ß, say, for some ß > 0. 

If we can find the separate similarity solution for the region 

behind this reflected shock, say V, C, and R, then the two solutions 

will have to satisfy the jump conditions at x = ß.  We will need to 

satisfy 

I've« - £i(i+vc«) + w+lf[% 
(4.1) 

C2(ß) = C2(ß) + ^-~[(1+V(ß))2 - (1+V(ß))2]. 

Note that the constant of motion will be a different constant on 

the two sides of the reflected shock, just as it is a different con- 

stant on the two sides of the initial shock. 

This separate solution is needed for ß < x < °°, and the only 

thing we have to serve as a boundary condition is the following. 

We want u(r=0,t>0) to be zero, by isotropy, and we want c(r=0,t>0) 

to be finite.  In fact, we expect u to be proportional to r, for 

small r, so we expect V to be constant and C to become infinite as 

x->°°. 

The standard trick is to take a new variable w = x"at  with a a 

positive number to be determined, and to try 

V(kw) = Vn + V.kw + V\(kw)2 + ... 
01     2 (4.2) 

C(kw) =-(kw)_1 +  C1  +  C2kw + ..., 

where k is a free parameter (our differential equations are homo- 

geneous in w, so that V(kw), C(kw) are solutions whenever V(w), C(w) 

13 



are).  Matching powers of kw, we find that, if we take 

(4.3) 

V0 = -2(X-1)/Y(V+1), 

then we get a solution. 
If we now think of the jump conditions as an operator which can 

be applied to our original, incoming shock solution, for arbitrary 

positive x, then we have "target" functions V"t (x) and Ct (x) , to be 

matched by V(kw) and C(kw).  The value of x at which that match 

occurs is, of course, just 3.  If the value of kw at which the match 

occurs, is, say, z, then we can determine k by setting z = kß~a, and 

we have the complete solution. 

V.   THE LIMITS Y+ro AND y+l. 
For y-+m,  we need only switch to V = yV,   and then we can go to 

2 
the limit explicitly.  The denominator D becomes simply 1-C ; the 

numerator for V becomes 

ff1 = - XV + C2[(v+l)V + 2(X-1)], (5.1) 

and the numerator for C becomes 

N_ = C-[C2 - X   -(v+l-X)V/2]. (5.2) 

These somewhat reduced equations can be integrated numerically by 

the methods described below for general y. 
For Y+l>   tne situation is slightly more complicated, because 

the singularity approaches the starting point (V,C) = (-1,0).  If we 

define e2 = Y_1» then, to lowest order, our starting point is 

(V c0) = (-l + e2/2,e/yß~) .     The starting value for D is then -e /2. 
Now if we tentatively assume that X-l will turn out to be of order 

14 



e, we find that the leading terms in N are 

N 1 £ -(v + l)C2 + (l+V)2 + (A-l)(l+V), (5.3) 

and the leading terms in N are 

N2 £ C[C
2-(1+V)2] (A+V)/(l+V), (5.4) 

considering that we must integrate from l+V = C2 until l+V = C at 

the singularity. 

If we integrate dC/dV = N2/N1 holding C fixed on the right hand 

side, we find, consistently, that C changes only by a factor 1 - 

order (eloge), and we find, again consistently, that we must have 

X-l = v VCRL)/2. (5.5) 

This is confirmed numerically, as well as the additional result 

that the Mach number of the reflected shock is \2/(y_l), independent 

of v (see Table 5) . 

TABLE 5 

BEHAVIOR OF THE SIMILARITY SOLUTIONS AS GAMMA APPROACHES UNITY 

(1-aj 
(Y- 1)M2 

(Y- ■1)3 Y-1 
Y-1 v = 2 v=l v=2 v=l v=2 v=l 

0.1 0.4163 0.1317 1.262 1.685 1.615 1.354 

0.01 0.9630 0.2755 2.117 1.986 
0.001 1.4864 0.3953 2.202 2.153 1.518 1.252 
10"4 1.7909 0.4587 2.102 2.073 1.215 1.109 
10"5 1.9216 0.4849 2.042 2.030 1.084 1.044 

10"6 
1.9641 0.4933 2.022 2.014 1.033 1.017 

0 2 1/2 2?' 2? 1? 1? 

15 



VI.  MULTIPLE CONVERGING SHOCKS 
If there is a similarity solution corresponding to more than 

one incoming shock, then the shocks must have the trajectories 

r. = A.(-t)a, (6.1) 

with A. = A < A < ...  If x. be the value of the similarity vari- 

able on which the ith shock exists, then we must have x±  = -(A/A±)2. 

Consider i=2. 

With D(V,C) = (1+V)2 - C2, the jump conditions of Eq. 3.1 imply 

D2 = "Dl 
_U_X \  + ri (6.2) 

. y+lll+V I y+1 

so that D must change sign.  Furthermore, since Region 2 is behind 

the shock, we have R > R1 > 0, and thus the third jump condition 

implies (1+V ) 2 < (1+V-.)2.     But then the second jump condition im- 

plies C 2 < C2
2, giving D1 > D2<  Since D1 and D2 are of opposite 

sign, we have D  < 0, D-. > 0. 

Note:  A "shock" existing right at the singularity D = 0 has 

Mach number unity and is not a shock at all. 
Since our solution behind the initial shock starts out with D 

negative, we see that x must be greater than the value for which 
Li 

the region 1 solution crosses the singularity.  Thus we must have 

the same value of a (=1/A) as we have for the single shock case, 
since a is determined precisely by the necessity of passing through 

the singularity. 

Rewriting the jump condition on D in the form 

C   2 

D2= -°l[l "FT(I -\*k))]' (6.3) 

and noting that D  > 0 implies (^/(1+V^)2 < 1, we see also that 
|D | < D  with the inequality stronger for smaller values of y. 

16 



D= 0 

LOWER 
SINGULAR 

Fig. 6-1 
The dashed line is the locus of 
points accessible from sn by the 
jump conditions.       *■ 

This means that the vector in ^   0» 0' 

the V-C plane connecting (V , C ) 

to (V C?) has negative slope 

between -1 and 0. 

When the matter is investi- 

gated numerically, it turns out 

that the locus of points (V\r ) 

as x„ ranges toward zero from 
the value of x corresponding to 

the singularity, is an arc con- 

necting the singularity to the 

starting point (V ,C ) and lying 

always below and to the left of 

the original solution curve (see 

Fig. 6-1).  When an attempt is 

made, however, to continue the 

solution from any of those points (V C ) , it develops that the 

solution moves almost parallel to the original solution curve. 

Hence, the continued solution cannot pass again through the same 

singularity. 

This immediately suggests that when y  is greater than the 
critical value of Eq. 3.8, so that the primary solution goes through 

the right hand (upper) singularity, a point (V c2) can be found so 

that the continued solution will pass through the left hand (lower) 

singularity.  This turns out indeed to be the case when y  is greater 
than Y by an amount small enough that the width of the locus 

(measured parallel to the 45° line C = 1+V) is not less than the 

spacing between the two singularities.  In fact, there will be two 

double shock solutions, for a band of y  values, corresponding to 
relatively weak and relatively strong second shocks, with the two 

solutions coalescing at the top of the band and then ceasing to 

exist as y  leaves the band. 
For y's above this band, non-standard solutions may exist with 

y's sufficiently close to the upper bound of Eq. 3.6, which is to 
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say with the two singularities sufficiently close, to permit fur- 

ther solutions with two incoming shocks.  A complete analysis will 

be published elsewhere. 

The entire situation can be grasped most simply as follows. 

Pick values for v and y,   with y  >  y   .  This determines a starting 
point in the V-C plane, and a one parameter family of (incomplete) 

solutions labeled by X.     Pick a value for X  which lets the solution 

pass through the right singularity and continue to the origin; call 

the corresponding solution curve S .  Now that we have X,  we can 
locate the unused left singularity and construct the solution curve 

(call it S ) which passes through it in the standard direction. 

Lastly, we draw in the (V2,C2) locus corresponding to potential 

second shocks.  Then we have zero, one, or two double shock solu- 

tions according as that locus cuts S2 in zero, one, or two points, 
because we have a physical method of jumping from solution curve S1 

to solution curve S2.  Finally, if the left singularity should have 
eigenvalues of the same sign, then there would by a family of S^s, 

all valid. 
Typical solutions are shown in Table 6-1. 

TABLE 6-1 
MACH NUMBERS FOR WEAK AND STRONG SECOND SHOCKS 

For v = 1 (Yc = 1.9092084) 

Y Ml M2 

1.91 1.000566 1233.532 

1.95 1.078474 22.34995 

2.00 1.248826 8.846871 

2.05 1.548093 4.701998 

2.10 none 

For v = 2 CY  = 1.8697680) 
1.87 1.000170      3508.718 

1.90 1.070279      24.19837 

2.00 1.848820      3.496177 

2.009 2.220365      2.701936 

2.01 none 
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VII. CONDITIONS BEHIND THE REFLECTED SHOCK 
The position of the reflected shock, as a function of time, is 

given by 

rr.s.(t) = A$~ata> C7.1) 

where ß is the value of the similarity variable x corresponding to 

the shock trajectory, as mentioned above, and A is the constant 

appearing in the trajectory of the initial shock. 

For the region behind the reflected shock (inside it, geomet- 

rically speaking), it is of interest to consider the time depend- 

ence of the volume integrals of mass, internal energy, and kinetic 

energy, and of the "mean free path" integral of pdr.  By appealing 

to the original substitutions (Eq. 2.6) for u, c, and p, and by 

substituting for r the appropriate expression in terms of t_ and the 

similarity variable w (which runs from zero to ß  ), we find the 

following, for given v and y,   taking p  = 1. 

The total mass is simply proportional to the total volume, with 

no other time dependence, and the integral of pdr is simply propor- 

tional to r      (The volume, of course, is going like t^    .) 
The total internal energy and the total kinetic energy are separate- 

ly proportional to the volume times the factor t  *• "a .  As re- 

quired for physicality, a is always less than unity, so that the 

average values of internal and kinetic energies per unit volume 

decrease with time.  (These results also imply that the energy den- 

sities behind the reflected shock are instantaneously infinite at 

collapse time.  This is in accord with the fact that C(x)/x and 

V(x)/x remain finite at x = -0, so that the fluid velocity u(r,t) 

and the sound speed c(r,t) behind the initial shock become infinite 
like r-(

1-°0/a at collapse.) 

The various constants of proportionality are given, as func- 

tions of v and y,   in Tables 7-1 and 7-2.  I..  and I?  are, respec- 
tively, the internal and kinetic energies per unit volume, times 

A~2ß2at t "a .  I, is the mass per unit volume; I. is the mass per 
unit area divided by r r. s. 
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TABLE   7-1 

VARIOUS  PARAMETERS   OF  THE  STANDARD  SIMILARITY  SOLUTION,   AS 

FUNCTION  OF  GAMMA;   SPHERICAL  CONVERGENCE. 

v =   2   (spherical) 

Y ot 6 Mach  #     P2(ß)       l± I2 
X3 l\ 

1.1 .79596980 16.1541 3.5530 333.6 1.95+6 243.33     4.8+4 3.6+4 

1.2 .75714179 6.43123 2.3502 49.05 1.37+4 11.0163  1710. 1253. 

1.3 .73377673 3.81021 1.9384 19.03 1031.6 2.2220     320.4 231.1 

1.4 .71717450 2.68849 1.7356 10.72 197.5 .8029       114.1 81.83 

1.5 .70442807 2.08773 1.61553 7.226 60.76 .3894        56.12 40.21 

1.6 .69418951 1.72065 1.53621 5.479 24.73 .2243 33.30 23.91 

5/3 .68837682 1.54790 1.496.7 4.719 15.09 .1655       25.20 18.14 

1.7 .68571652 1.47617 1.47982 4.419 12.07 .1443       22.27 16.05 

1.8 .67855370 1.30320 1.43758 3.729 6.685 .1002       16.17 11.71 

1.9 .67240014 1.17523 1.40470 3.251 4.058 .07355 12.45 9.061 

2.0 .66704607 1.07725 1.37833 2.902 2.641 .05628 10.01 7.327 

2.2 .65816533 .938224 1.33851 2.432 1.3015 .03609 7.102 5.262 

2.4 .65108461 .845319 1.30973 2.134 .7399 .02521 5.489 4.115 

2.6 .64530018 .779560 1.28784 1.930 .4645 .01870 4.493 3.406 

2.8 .64048378 .731006 1.27056 1.783 .3138 .01453 3.835 2.936 

3.0 .63641060 .693969 1.25649 1.672 .2232 .00159 3.360 2.600 

3.2 .63292118 .664976 1.24482 1.587 .1663 .009571   3.024 2.358 

3.4 .62989873 .641817 1.24487 1.518 .1279 .008029 2.762 2.171 

3.6 .62725578 .622959 1.22641 1.463 .1008 .006819 2.550 2.023 

3.8 .62492541 .607422 1.21895 1.417 .08034 .005740 2.354 1.896 

4.0 .62285554 .594419 1.21246 1.3785 .06746 .005209   2.263 1.815 

4.5 .61857036 .569946 1.19897 1.3056 .04302 .003673 1.960 1.622 

5.0 .61522398 .552999 1.18871 1.254 .03095 .002974 1.832 1.518 

5.5 .61253956 .540843 1.18033 1.217 .02222 .002258 1.665 1.419 

6.0 .61033915 .531820 1.17342 1.188 .01773 .001978 1.628 1.374 

6.5 .60850311 .524919 1.16776 1.165 .01348 .001544 1.503 1.308 

7.0 .60694820 .519578 1.16281 1.147 .01116 .001359 1.473 1.279 

8.0 .60445829 .511963 1.15480 1.120 .007824 .001033 1.398 1.227 

10 .60104880 .503479 1.14368 1.087 .004273 .000615 1.263 1.149 

50 .59073010 .494072 1.10718 1.0118 .3173* .06482* 1.043 1.018 

100 .58950281 .494977 1.10233 1.0055 .2859* .05965*   .9883 .9975 

.58828929 .496368 1.09753 1 0.2880* .6456* 

*:      (Y+1)
2
I 
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TABLE   7-2 

VARIOUS   PARAMETERS  OF  THE  STANDARD  SIMILARITY  SOLUTION, 

AS  FUNCTIONS  OF  GAMMA;   CYLINDRICAL   CONVERGENCE. 

v =  1   (cylindrical) 

Y a ß Mach  #       p2(g)       ^ i2 i3 i4 

1.1 .88524806 13.5364 4.10488 29.55 3.28+5 15.614 5236. 4681. 

1.2 .86116303 6.09996 2.78911 11.15 6889.0 1.9614 506.1 445.0 

1.4 .83532320 2.81561 2.02295 4.796 203.46 .2822 65.48 57.11 

5/3 .81562490 1.69479 1.69965 2.928 21.144 .07873 19.31 16.88 

1.8 .80859994 1.44082 1.61796 2.527 10.139 .05152 13.32     11.69 

1.9 .80409908 1.30515 1.57247 2.316 6.4327 .03949 10.68 9.390 

2.0 .80011235 1.19963 1.53602 2.154 4.3370 .03129 8.870 7.817 

2.4 .78776900 .941829 1.44206 1.763 1.3299 .01528 5.270 4.694 

3.0 .77566662 .763158 1.37121 1.496 .4265 .007407 3.398 3.069 

3.4 .77000368 .697702 1.34349 1.399 .2485 .005175 2.828 2.575 

4.0 .76363465 .634863 1.31564 1.306 .1329 .003377 2.341 2.150 

5.0 .75640105 .575038 1.28751 1.219 .06190 .001948 1.917 1.783 

6.0 .75156168 .540788 1.27050 1.169 .03523 .001273 1.693 1.589 

10 .74182593 .483613 1.23980 1.0867 .008622 .0003962 1.325 1.281 

50 .73002154 .431537 1.20756 1.0142 .6287* .04112* 1.0736 1.0554 

100 .72853594 .426147 1.20374 1.0069 .5831* .03909* 1.0358   1.0269 

.727048052   .421009     1.199865   1 .5431*     .03745* 

*:     (Y+1)2I 

Another integral of possible interest is the integral, from 
time zero to time t, of the volume integral of a power of the tem- 

perature (or pressure or internal energy; we are dealing with a 

polytropic fluid) times some function of the density.  One might 

imagine such an integral measuring the total amount, taking place 

up to time t, of some reactive process having such a dependence on 

density and temperature (assuming, of course, that the energetics 

of the process do not break the similarity solution).  For the nth 

power of the temperature, we find the following rather curious re- 

sult.  If 2n < (va+a+1)/(1-a), then the integral is entirely regu- 

lar and goes like tva+a+1_2n^-1-"a) .  But for any larger value of 
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n, the integral would diverge unless other effects (such as deple- 

tion of the reactants) were taken into account.  For v = 2, the 

critical values for n(y) are, for example, n(1.4) = 5.57, n(3) 

= 4.00, n(~) = 3.36. 

VIII. THE NUMERICAL INTEGRATION 
All calculations were done on the Maniac II computer, using 

the Madcap V system.  All constants and variables entering into the 

integration of the differential equations were carried with at 

least 16 decimal digits.  Explicit fifth order Runge-Kutta was 

used, with step size controls as discussed below. 

For the a search, and in fact for all the region behind the 

incoming shock, the independent variable used was x = t(A/r) , and 

the dependent variables were v(x) = -V(x)/x and c(x) = C(x)/x.  The 

minus sign is historical accident; the division by x is to give 

nice behavior at the star point singularity V = C = 0.  The initial 

value for x is -1, and integration must be continued past the un- 
known value x = ß.  An efficient method of coping with this diffi- 

culty is described below. 

The equations were used in the form dv/dx = N1/D, dc/dx = N2/D, 

where now 

D = (1-vx)2 - (ex)2, (8.1) 

Nl = P1[
v2(1"vx) + P2

c2l " P3
vc2x' 

2       P2 
N? = c[v(p,-p?nvx) + p-,c x(l - ~—■ -}], 

I b  zu      x       2(1-vx) 

and the constants are 
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Pj = 1-a 

P2  = 2/Y 

P3  = (v+l)a - 1 (8.2) 

P5  = 1/2 [(Y+l)(l-a) - av(y-l)] 

P20 = l-a-av(y-l)/2. 

For the search for the "standard" a(v,y)> we exploit the facts 

that the correct solution goes quite smoothly (in the V-C plane) 

from its starting point through the singularity, that the positions 

of the singularities are quite sensitive to the value of a, and 

that the solution curve for a wrong value of a does not differ much 

from the correct solution curve all the way up to a point where we 

can determine that we do indeed have a wrong value.  Accordingly, 

an efficient iterative algorithm is to choose the next guess for a 

so as to move the relevant singularity on to the line connecting 

the initial (v,c) point to the last (v,c) point reached before the 

aforesaid determination.  In practice, this determination was made 

if dV/dx changed sign or if |dv/dx| became larger than three times 

its initial value.  (When calculating the non-standard solutions 

discussed on pp. 10-12, the "determination" is simply suppressed.) 

It is important to note that all finite numerical representa- 

tions of a will be determined to be wrong if we approach the 

singularity with a sufficiently small step size.  Conversely, 

almost any value for a will get us through the singularity without 

such determination if we approach with a sufficiently large step 

size.  Accordingly, the step size was automatically reduced to a 

prescribed h -n, as we approached the singularity, and no further, 

with h .  chosen to give the desired accuracy.  The bulk of the a 
min ^0 a.   Q search work was done with h .  = 2   ^ 10  . 

mm 
The code was run in the a search mode for all desired values 

of (v,y), without continuing the solution past the singularity. 
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Then it was rerun with the correct a and with larger h^in (usually 

2"24 %  6.4x10"^)  to get the complete solution.  In this mode, it 

was almost always true that the solution would step smoothly 

through the singularity in a single h   step, but this is a matter 
of luck.  If, as happened occasionally, the code determined that a 

step (or a partial step within the Runge-Kutta) might accidentally 

land too close to the singularity, then it took a "jump" step of 

8h   and printed a notification.  (Note that, as discussed else- 
nun . .     .    . 

where, we are passing through the singularity in an eigendirection, 

without change of slope.) 

In continuing the solution through x = 0, the step size was 

again reduced to h . , in order to permit printing out accurate 6 mm' 
values of V(x)/x and C(x)/x at x = 0. 

Two problems arise, now, in connection with continuing this 

phase of the solution up to x = ß.  We must be sure to go far 
enough, but we do not want to waste time going too far, and we need 
finely spaced tables of the "target" functions defined on page 14, 
but only in the neighborhood of (the unknown) ß.  The two problems 

are solved as follows. 
The code is given a lower bound for ß, call it ^min',   if no 

better information is available, then zero is the lower bound used 

by default, but of course we can do much better than that once we 

have sketched out ß(v,y) by running a few cases.  The code then 

saves the solution for some value of x near B .   and pushes ahead 
using large steps and saving a coarse table of the target functions, 

It pushes ahead until it approaches the singularity C = -(1+V), 

which must always lie beyond ß, and then finds the (approximate) 

reflected shock solution (see below) and an approximate value for 

ß.  Then it picks up the saved solution from near B   and moves 

ahead with fine steps until x is safely beyond the approximate ß, 

and, finally, gets an accurate solution for the reflected shock. 

For the region behind the reflected shock, the independent 

variable used was t = kx"a, where k is a free parameter that 
cancels out of the differential equations and is used as described 

below, and where a  is as defined by Eq. 4.3.  The dependent 
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variables were v(t) = -V(x) and c(t) = C(x) + 1/t.  The starting 
value for t was normally taken as about 2~^5 ^ 3.2x10"^.  The differ- 

ential equations were used in the form dv/dt = M,/(atE) and dc/dt 

= [-1 + (l-ct)M /(aE)]/t2, where 

E  = (1-ct)2 - (l-v)2t2, (8.3) 

M±  =  v(l-v)(l-av)t2 - P4(l-ct)
2(v-p6), 

M2 = (l-ct)2(a + -^ - t2[(l-v)(l-p22v) + p23v], 

and the constants are 

p4  = a(v+l) 

p  = 2J^L  (8t4) 6 ay(v+l) 

P21 = (l-a)/Y 

p22 = a(l + 1/2V(Y-1)) 

P23 = l/2(Y-l)(l-a). 

The starting value for v(t) is p  removing the 1/t singularity in 

dv/dt.  The starting value for c(t) is zero; it can be determined by 

substitution that the starting value for M is then just a,  which 
removes the l/tz singularity from dc/dt.  A little analysis shows 
that v(t) is even and c(t) is odd, so there is in fact no 1/t 

singularity either. 

The integration is carried out until V = -v and C = c - 1/t 

match the target functions.  The interpolated value of x at which 

the match occurs is then ß.  If it is desired to tabulate the solu- 

tion behind the reflected shock against x, which runs from ß to 
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infinity, rather than against t, then the parameter k can be identi- 

fied as k = tmatchß
a. 

IX.  THE DENSITY, AND THE MACH NUMBER OF THE REFLECTED SHOCK 

Taking the initial density  p  as unity, we can use the con- 

stant of the motion to find that, in the region between the incoming 

shock and the reflected shock (call it Region 2), 

P?(r,t) = p?(x) = 
Y+l 

Y-l 

^0 C /l+V \ 

* coV1+vo/ 
(9.1) 

where xn = -1, say, C. = C(xJ, and V = V(x ) , and where 

a = 
a(v + l) 

(9.2) 

2a(y+l)  b = YC^TJY-   (v-i)Ja - 2 • 

For the region behind the reflected shock (call it Region 3), 

we can use the jump condition to relate the densities at 3: 

3      (y-l)M2 + 2  Z 
(9.3) 

where the Mach number, being the magnitude of the ratio of fluid 

speed ahead of the shock, relative to shock speed, to sound speed 

ahead of the shock, turns out to be simply 

M = |(l+V2(ß))/C2(ß) |. (9.4) 

26 



Then we can use 

P3(r,t) = p3(x) = p3^[fc^r(i^w)a] •     ^5> 
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